Constrained Bayesian Optimization with Noisy Experiments
نویسندگان
چکیده
منابع مشابه
Constrained Bayesian Optimization with Noisy Experiments
Randomized experiments are the gold standard for evaluating the effects of changes to real-world systems, including Internet services. Data in these tests may be difficult to collect and outcomes may have high variance, resulting in potentially large measurement error. Bayesian optimization is a promising technique for optimizing multiple continuous parameters for field experiments, but existin...
متن کاملBudgeted Optimization with Constrained Experiments
Motivated by a real-world problem, we study a novel budgeted optimization problem where the goal is to optimize an unknown function f(·) given a budget by requesting a sequence of samples from the function. In our setting, however, evaluating the function at precisely specified points is not practically possible due to prohibitive costs. Instead, we can only request constrained experiments. A c...
متن کاملQuantile-Based Optimization of Noisy Computer Experiments With Tunable Precision
This article addresses the issue of kriging-based optimization of stochastic simulators. Many of these simulators depend on factors that tune the level of precision of the response, the gain in accuracy being at a price of computational time. The contribution of this work is two-fold: firstly, we propose a quantile-based criterion for the sequential design of experiments, in the fashion of the ...
متن کاملMyopic Policies for Budgeted Optimization with Constrained Experiments (Project Report)
Motivated by a real-world problem, we study a novel setting for budgeted optimization where the goal is to optimize an unknown function f(x) given a budget. In our setting, it is not practical to request samples of f(x) at precise input values due to the formidable cost of experimental setup at precise values. Rather, we may request constrained experiments, which give the experimenter constrain...
متن کاملMyopic Policies for Budgeted Optimization with Constrained Experiments
Motivated by a real-world problem, we study a novel budgeted optimization problem where the goal is to optimize an unknown function f(x) given a budget. In our setting, it is not practical to request samples of f(x) at precise input values due to the formidable cost of precise experimental setup. Rather, we may request a constrained experiment, which is a subset r of the input space for which t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2019
ISSN: 1936-0975
DOI: 10.1214/18-ba1110